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Effective dipole potentials after angle averaging

S. J. Miklavci¢
lan Wark Research Institute, University of South Australia, The Levels, South Australia 5095, Australia
(Received 24 February 1997

The problems of a freely rotating dipole interacting with a charge, and of a freely rotating dipole interacting
with a polarizable surfacédielectric discontinuity, are solved here. Fully analytic expressions for angle-
independent, i.e., radially symmetric, effective interaction potentials are derived and analyzed for their
asymptotic forms. For the charge-dipole case the exact result takes a simple enough form to permit direct
implementation in statistical mechanical calculations, and displays the appropriate limiting forms at large and
small separations. The dipole-surface interaction potential is slightly more involved analytically but is never-
theless amenable for application in statistical thermodynamic study of bulk systems. Order parameter analyses
demonstrate the orientational behavior of the dipole at small, large, and intermediate distances.
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INTRODUCTION —o(r,Q)/KT,
e—A/kT:feJ‘d—QdQ, (2)

The purpose of this paper is to elaborate on the effective
potentials polar molecules experience as a result of configu- . )
rational fluctuations at finite temperatures. The history of thigvhere{} represents any and all rotational variables. In Eq.
type of problem goes back to the work of Keesfti, who (2) ¢ is the zero-temperature, angle-d_ependent interaction
was interested in effective potentials between freely rotatingnergy. For the above two electrostatic cagetakes the
dipoles (although he erroneously worked with the internal €Xplicit forms[4,5]
energy rather than the free energy, as first pointed out by
Rowlinson[2]). Such problems continue to occupy the ef- Qi COY6)
forts of researchers whose interests range from the more 0= " Aree, 12 (3a
practical challenge of predicting or describing protein inter-
actions[ 3], to more fundamental concerns such as the imple-

mentation of effective radially symmetric potentials between _ Mapr 1 5 0 0
multipolar molecules for statistical mechanical modeling of Cur™ " Arege, 3 [2 cogby)cos ;)
condensed matter systeiab-7]. ] ]

The best known examples of effective potentials are the —sin(6)sin(6,)Cos ¢y — ) ]. (3b)

closed asymptotic power-law expressions for charge-dipole
and dipole-dipole interactions. These are interaction free ernfhe angled in Eq.(3a) is the angle between the dipole vector
ergies, obtained after Boltzmann averaging over orientationand the line joining the positions of the charge and the di-
[4,5]: pole. In expressiofi3b) the anglesy; and 4, are the angles
between the dipole vectors and the line through the dipole
1 q2u’ 1 p2p positions, the angle$, and ¢, are the azimuthal angl¢see
qu=" 54—)2kTr4’ AL=- §m_ F|gs_. 1@ and 1b)]. I_nsertmg Eq.(_3) into Eq. (2),_an_d re-
(4meoe; 0&r placing the exponential under the integral sign with its power
@) series expansion, truncated at the third term, leads to the
low-energy or high-temperature approximationg<{kT)
These free energy formulas are obtained by evaluating thgiven in Eq.(1).
“configurational integral” for a two body system involving  Clearly, considering the limitations that accompany Egs.
either a charged) and a freely rotating dipolew,) or two (1), significant benefit would be achieved by improving upon
freely rotating dipoles(x; and u,), respectively. Integra- these high-temperature results. This is the ambition here,
tions are performed over rotational degrees of freedom. Iwhere we investigate the two cases of a charge-dipole inter-
Eqg. (1) r is the distance between the relevant entitiess  action in otherwise free space, and a dipole approaching the
temperaturek is Boltzmann's constantg, is the relative  boundary between two dielectric media. These systems have
permittivity of the medium, and is the permittivity of free  not received a great amount of attention compared to the
space. In mathematical form, the configurational averagedipole-dipole case, presumably because of the importance of
free energy relationship is written §4] first attaining an accurate description of a pure bulk dipolar
fluid. A heterogeneous system, as is implied by the intermo-
lecular potentials we investigate here, by definition repre-
*Also at the Department of Physics and Measurement Technolsents a more complex problem. Nevertheless, we present
ogy, University of Linkging, S-581 85, Linkping, Sweden. analytic formulas for the interaction free energy, total en-
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/ charge and a freely rotating, thermal fluctuating dipole. Coen
/ et al.[3] have shown by numerical evaluation of the integral
in Eq. (2) using Eq.(33a that the true potential exhibits great

Oq) departures from Eqla as separation decreases. Although

not explicitly mentioned by Coeat al. this departure arises
from the fact that a freely rotating dipole will tend to align
q, n, itself in the presence of the field, in its most favorable ori-
entation. The energy of interaction will then more likely rep-
(a) resent that between a charge and a fixed di;ﬁE_tqa (3a]
with polar angle6=0 or 7 depending on the sign of the
charge. Despite the apparent triviality of the exercise, it ap-
. ; pears unappreciated that an analytic form for the effective
\ / interaction potentiald,, is actually tractable. That is, one is
\ / not restrained to the high-temperature limit to produce an
) 0 (1)1,(1)2 analytic angle-independent potential, nor does one need to
' r 22 _'9 resort to numerical integration to get values at arbitrary sepa-
rations. An analytic form forA, is certainly much more
desirable for practical reasons, such as estimating second
Ky M virial coefficients at low concentrations or as input into more
(b) intensive numerical calculatior{simulations and/or integral
equation theorigsfor finite density systems.
What makes the exercise possible is the fact éhgtis a
function of the polar angl® but is independent of the azi-
muthal angle. The integral(2) can be written as

27 (7
—@(O)IKT i
o (X,%,2) ny fo fo e ¢V sin(g)d6 d¢
e AQ/«L/ T— (4)

f:”fow sin6)dodg

where ¢(0)/kT=—aB cos@), B=1/KkT. The integral over
¢ is trivially evaluated. The integral ovetis an elementary

<..>—e—

7 one. After effecting a variable changes cos@), it is in fact
simply
11 sin
e Aau/kT=— f e*Psds= sin(e ) . 4)
2 -1 aﬁ

As a=qyu ldmeqe, r?, the complete expression for effec-
tive charge-dipole interaction free energy,

4mege kTr? |0l w2
Aqu=—kTn |da| 12 4mrege kTr?) |’ ©
(c) shows a much more complicated distance dependence than

o o ~ that implied by the power-law form of E¢la). In Eq.(5) we
FIG. 1. Schematic figures describing the geometry and notatiogye written the absolute value for the charge since the result
of the three different interacting systems discussed in the taxt. is independent of its sign. A plot of the interaction free en-
The geometry used for a chargp, interacting with a freely rotat- ergy is shown in Fig. 2.
ing dipole, u,. (b) The system of two freely rotating dipoles, The angle-averagetbtal energyof interaction, as op-
F1, 42 (©) The case of a dipole: a distancd from a polarizable posed tofree energy 2], is just as easily obtaineél. It is re-

surface, the boundary of two semi-infinite dielectric meghiermit- . - .
tivity is e, ande,). In all cases the's are the polar angles between spectively defined by the following and evaluated to be

the dipole vectds) and the line joining the multipoles, th#s are 27 (m .
the azimuthal angles. and| are distances. kao fo afB cog §)e*? %% sin(9)d6 d¢
ergy, and order parameter for the above two cases, valid at‘Pqu(r): - 27 [
arbitrary distances, and demonstrate limiting behavior at f f e*# %9 sin(6)do dg
small and large separations. o 70
=—kT{aB coth aB)—1}. (6)
FREE SPACE INTERACTION OF A CHARGE , . . o
AND A DIPOLE [Eq. (6) is valid for the case when the relative permittivity

does not depend on temperature. In cases where
Our first purpose here is to provide an explicit and exact=¢,(T), a multiplicative factor of - 8 d In ,/68 must be
form for the angle-averaged, effective potential between antroduced to correct Eq6).] That is,
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108 T T T T 11717 T T T T T T 4 |q1|,U,2 ) ]
+2exg ————=>| " r—o0
KTr ' '
E : TEQEr 9)
5 F 2 2
= 10 T (r)=— R _ |01l p5
5 Pau 3(4mege,) KT 15(4mege,) KT
o 2
A 10
z +O<r‘8>j, r—c,
D
ﬁ 107 the last formula being twice the corresponding largénit
K E E of free energy, with the difference between the two repre-
L E | \ N senting the loss of entropy due to increasing alignment. The
107 B S e difference between the free energy and internal energy is
10 10 10 10 always the entropy loss, however, the factor of two is only
Dimensionless Distance valid in this larger limit. The trend is demonstrated in Fig.

_ _ . _ . 2. The smallr limit demonstrates the preferential alignment

FIG. 2. Plots of effective potentials describing the interactiongf the dipole in the strong Coulombic field of the charge.
between a charge and a frgely rotgting dipole. The thick soliq line i%lthough Eq.(5) has an additional logarithmic divergence as
the full expression for the interaction free energy, 9, the thick vanishega small term compared to ther #/contribution,
dashed line represents the total internal energy, (En.The two  the preferred orientation of the dipole as implied by the lead-
thinner dashed lines represent the asymptotic forms of these quathg term is quite apparent. The benefit of implementing Eq.
tities. The lower of these represent the interaction free energy whil%s) and/or Eq(7) rather than Eq(1a) in more practical situ-
the upper curve represents the largéimit of the total energy.  ations should not be underestimated. The variation in the
Energies are quoted in units &fT, while the nondimensional gjstance dependence is a manifestation of the dipole’s physi-
charge-dipole distance is definedRgqin=r v47e0s,kT/|q1/ 2. cal response to the field of the charge; the dipole undergoes
In order to present the results on a log-log plot and so highlight they transition from that of a freely rotating.e., weakly ori-
power-law behavior, the attractive potentials have been multiplieq;nted to a strongly polarized molecule. This can be best

by —1. appreciated by evaluating the dipole’s order param&er
which is a quantitative measure of the alignment tendencies.
— |0/ |0/ pe S, defined ag8]
Pau(r) = _kT[47T£ 18 k2Tr2 t 47e 18 k2Tr2 -1
o€r o€r S=(P,(cog6))

(7

. . . (1/4w)fzwfw 113 co2(0)— 1]e~ *KT sin(6)d6 de
Figure 2 also displays the complete distance dependence of o Jo ?
this average energy. These formulas have the appropriate= Py
limiting dependences. In the limit of largeor largeT, using (1/47T)f f e ¢ sin(9)do do
the fact that sinh)~x+x%/6, cothk)~1/x+x/3, and In(1 0 Jo

+x)~x+x%/3 one readily confirms that E¢5) reduces to Eq. (10)
(1a), while Eq. (7) adopts twice that value, each being that
expected for a freely rotating dipole in the high-temperaturds found to be
limit [4]. In the limit of smallr, sinhk)~exp(k)/2 while

2\ 2
cothf)~1+2 exp(~2x)+2 exp(-4x), so that both Eqs(5) s:1_3(477808’k-rr ) [ Gik2 ,
and(7) tend to Eq.(3a) [with cos@)==*1 as appropriate for REVCY) 4mege KTT
the particular sign ofy] to leading order. Explicitly, these Qs
limiting results take the form —
Imiting u XCOt"(W) 1] (11)
|0l sz |da| p2 with the limiting trends
Aq (r):_ > 2| —0
m Aarege,r 2mege KTr
(8) o i( Qa2 )
15\ 4mepe kT
A (r)=— CHR%: 1- |0/?3 o 5
)= T G(Amege)2kTr? |~ 30(4meqs, ) 2kTrA i_i( Qupa |° 1 2
X2 315 | Zrogekt 18T O H“élz)
+O(r_8)]' r—o 127ege,k
. oerkT Quuz 1
=1 Qip2 ' 1+26XF< 2meoe, KT rz)
for the interaction free energy, while the average total inter- 1
nal energy tends to the forms +2exp — T S I r—0.
meoe KT r? '
o (r)=— |94l 2 142 exd — |94l 2 That is, at increasing distanc&-0 indicating decreasing
Pau 477808rr2 27-rsosrkTr2 correlation while for decreasing distanc8s-1, the limit
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l ~——r—rr——r——rrT effects, the electrostatic potentidl at an arbitrary point in
08 F ] the region with dielectric constaat, due to a point dipole:
— TE B at a distancé, from a dielectric of relative permittivity, is
2 06 [ ]
g o4l E (X sin(6)+(z—1)cog 6)
s O F 1 V., (Xy,2)= 77 2
o - ] ® dmege, Xty +(z—1)
S 02} 3
. R ] A(x sin()—(z+1)cog 6))
g O 1 O~ eosf)| -y
= 02 b E X“+y“+(z+1)
© ]
04 T E where A=(g,—¢,)/(g1+¢5,) is the dielectric disparity of
| Y T T A S S S R the two media, andx,y,z) is a point in the region with
0 0.5 1 1.5 2 2.5 dielectric constant;. However, of greater significance here

is the electric field derived from this potential, but acting
specifically at a poinz#1 on thez axis. This is given by

FIG. 3. Plots of the order parameters for the two systems studied
in the text: (a) the charge-dipole system, E(.1) (solid line); (b) M

Dimensionless Distance

the dipole-polarizable wall system, E49) (dashed ling Note that E(0,02)=~ 4mepeq (z—1)® (sin(8).0,~2 cog6))

the distances have been scaled differently for these two systems.

For (@ rnongin=F V4meoe KT/|q1|p,, while for () Iongim o’

= (32’7T808rkT//,L2A)1/3. 4778081 (Z+ | )3 (S|n( 0) 0,2 CO$0))
expected for a perfectly oriented molecule. The full distance =Eqi(0,02) +E0(0,0.2). (15

dependence o8 is shown in Fig. 3. Another matter of no

small importance, in connection with a point charge interactThe first term in either Eq(14) or Eq. (15) is the direct

ing with a freely rotating point dipole, is the contribution of contribution from a free space dipole, while the second in

the surrounding medium. In particular, one can quite simplyeach case is the contribution from surface polarization

include the screening ability of an aqueous solution containeharges.

ing excess electrolytéat a Debye lengtix~1). In this case, What we are interested in evaluating is the work done in

the zero-temperature, salt-screened Coulomb potential béxinging the dipole, in a given orientation with respect to the

tween a chargeq;) and an ideal dipoley,) imbedded in a surface, from an infinite distance to a finite distahdeom

sphere of radius is found to be{9] the dielectric boundary. This work is done in opposition to
surface polarization charges. The relevant expression is

Quuz € " (1+kr)

2mege 1+ka Mz A .
o= ¢#(|,0):—[L'Epo|=mw(S|n2(0)+2 co§(6))
3ex@ cog ) 0%1

16
X272rat (ka)2t (1t ka)e, log] 12 19

(quu,( 01r): -

(13 Note that Eq.(16) can also be trivially obtained from Eq.
Pqul0,1)=—as cog0) (38b) assuming r=2I, u=pu, ur=uA,0,=0,0,=7—0,

and ¢, = ¢,. These latter assignments are based on the im-
age model in which the orientation of the image dipole is
ntrinsically associated with the orientation of the original
apole. The above energy change, or work performed, is
. - : . -~ positive or negative according only to the sign of the dielec-
argument of the sinh function and its prefactor. A similar - gisoarity, A. Irrespective of orientation, it is energetically

substitution in the angle-averaged total energy expression, orable to bring the dipole towards a medium of higher
Eq.(6), leads to an analogous generalization of & (apart dielectric permittivity €,>¢4), and unfavorable to bring the
from corrections due to the temperature dependence of th&pole towards a lower dielectric mediuna <z,). Since
dielectric permittivities. the most common situation of interest involves polar mol-
ecules in an aqueousigh dielectri¢ environment adjacent
THE INTERACTION BETWEEN A DIPOLE to a lower dielectric mediunte.g., hydrocarbon or giwe
AND A POLARIZABLE SURFACE shall, in what follows, assume that>0.

Writing Eq. (16) as ¢,(1,6)/kT=ap[1+cos(6)], and
substituting this into the argument of the exponential in Eq.
4), results in the following expression for the free energy of

interaction:

(g4 is the dielectric constant of the dipole sphere

Because of the identical angle dependence, the angl
averaged free energy then has exactly the same function
form as Eq.(5), i.e., replacingx in (4') with a above in the

Another important case for study is that of a freely rotat-
ing dipole approaching a dielectric discontinuity. This can be
considered relevant to the problem of adsorption of, say,
polar macroparticle or biological macromolecyrotein to
a surface that is the interface of two dielectric me@a., air
and wate). Consider the geometry of Fig(d. Using the (1T =a— 1 In
method of images to describe induced surface polarization m

B (17

1 1/2
- (a—;) erf(ap)|.
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In a manner analogous to the derivation of Eg). we can
evaluate the angle-averaged total internal energy

_ 1 a \¥2 e b
I =a+ o | —| —— @ (18
eull T)=at 2B (77,3 erf(\aB) (18

Similarly, from definition(10), the order parameter, measur-
ing the probability of alignment, is found to be

. 3 3 1 e 1 19
4aB 2 zap erf(\ap) 2
In Egs.(17)—(19), « is now
2
mA 1
“= Amege, 813 20
while erf(x) is the error function:
2 X
erf(x)= — J exp(—t?)dt. (22)
T Jo

Referencd 10] provides several different ways of evaluating

the error function based on rational approximations. These
avoid the necessity of evaluating the integral definition ex-

plicitly (Secs. 7.1.25-28 Despite the relatively simple
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independent term in Eq$17) and (18) (@) dominates at all
separations, we quote the departures from this contribution in
the limiting laws below(as well as plotting these energy
differences in figures For largel it can be shown that the
above three quantities tend to the limiting forms

1 w?A 1 2 wiA 1
AA)=3 70—577 |1~ 15 T T 517
3 47epeq 8l 15 47epe KT 8l
1
+0 I—g) ,
A_l_l wiA 1 4  uplA 1
Pl )_§ dregeq 83 1_'547TsoslkTW
1
+0 75|
and
o 2 w?A 1 +11 w?A 1
"~ 154mege KT 813 7 4megeokT 813
1
+0 l—g) . (22

closed forms these relations take, the physical behavior dBince the 1# dependence is also expected from the attrac-
the molecule that these formulas attempt to describe remairtive dispersion force between a neutral atom and a Wit
obscure. For the purpose of extracting information on thas not immediately obvious that a polar molec@eich as a

physics, the asymptotic laws valid in the limit of small or
large distances again prove useful.

protein will adsorb or desorb because of the repulsive con-

Since the angletribution predicted here. For smadllandA>0 we have that

KT [ m2eqe KT depe KT 2 w2A 1
— a2 201 g3 20" g3 /= - 3
AA,() > In( A 8l )+kT( A 8l ex;{ Armege KT 817 [1+0O(1%)]
2
+0l x| ~ 5o s
2 KT 81°) |’
TENE (23)
_ KT [ w?AKT 1 \%2 w?A 1 ) p( w?A 1
A¢”(|)_7_(47728081 W) ex _4778081kTm +0O|ex _2778081KTW ’
and
3 4meoe KT . 3 [4ege kT _\M w?A w?A 1 1
S_Z ,U,ZA 8 2 ,U,ZA 8l ex _471"9081kT8_|g +O)ex _271'8081kT8_|g 2

Equations(22) are actually valid for either positive or nega-
tive A, while Eqgs.(23) are strictly valid only forpositiveA.

ties are also shown in Fig. 4. The interaction betweéeealy
rotating dipole and a surface of polarization is dominated by

Different physical behavior is expected at small distanceshe static dipole-image dipole, t? dependencégfrom Eq.

when A <O0.
As stated above, in Eq&22) and(23) we have quoted the

(3b)], and doesot vary with separation as does the leading
term in the case of a freely rotating dipole and a charge or as

difference between the interaction free energy or total interis expected for two freely rotating dipolg€§]. This is, of
nal energy and the minimum energy configuration of thecourse, due to the fact that in this case these two digthes
dipole, in which state the dipole is aligned parallel to thereal one and its imageare alwayscorrelated, except at infi-

dielectric interface [cos@)=0]. That is, AA,=A,(l)
—¢,(l,7/2) andAg,(1)=¢,(1)—¢,(l,7/2). Both quanti-

nite distance. As the order parameter in E2R) suggests,
these dipoles become uncorrelated at a rate proportional to
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T T T T T g ence between energy and free energy, for reasons discussed
= 100 . . previously. The second feature is the contributiork®f2 to
é i 5 the internal energy, which is retained in the snialimit.
.g 3 F S This is characteristic of thequipartition of energgpplied to
5 10 E N E classical systems with Hamiltonians possessing terms in-
E - E volving quadratics of a degree of freedom, this being €os
1 F E

o 10 3 .
> F E SUMMARY AND CONCLUSIONS
= E E
é 10" B E We have derived exact expressions for radially symmetric
3 F N interaction free energies and internal energies for two sys-

10° T T tems involving freely rotating dipoles. The cases are those of

10?2 107! 10° a point charge interacting with a point dipole, and a point
dipole interacting with a polarizable surface. The interaction
Dimensionless Distance free energies given here, as effective two-body potentials
(i.e., pair potentials represent important tools to be imple-
FIG. 4. Plots of effective potentials describing the interactionmented in statistical mechanical studies of heterogeneous
between a freely rotating dipole with a surface of polarization.pylk and/or inhomogeneous liquid systems. Although their
These are plotted as differences in energies relative to the minimugpp|ication to finite density systems must be accompanied by
energy configuration as described in the text. The thick solid line igphe approximate assumption of additivityecause they ne-
the full expression for the interaction free energy, &), the thick glect any many-body contributionghe significance of Egs.
dashed line represents the total internal energy,(B.&). The thiq- 5) and (17) remains in the fact that they correctly describe
ner dashed line represents the common leading term in thg,o Hhysical response of the dipoles involved, to an external
asymptotic erm c.’f the_se quantities as quotec_i n (2@.) The_en- influence, a feature absent from the asymptotic potential
ergies are given |n.un|ts KT, while the nondlm;ensllgnal dipole- forms currently used.
wall distance is defined aongi=(32meoe kT/u"A) While the free energy formulas are useful in representing
interactions between entities in finite density simulations, it

the direct interaction. Thg order parameter’s full distance deéhould be remembered that the expressions for the angle-
pendence is shown in Fig. 3.

In the limit of zero distance the minimum energy orienta—averalged total energies, Eq$) and (18), are important for

tion is the naturally preferred one. The real dipole tends tothe correct evaluation of quantities such as total entropy or

. . . . energy of a system. This requirement is due to the fact that
line up parallel to the interfaced& 7/2) with otherwise ar- :
bitrary azimuthal orientation, hence the fact that the ordethe true energy or entropy of a system of freely rotating polar

. ) . , olecules is partitioned into a configurational part and a ro-
p&?fametesf‘l’? (.F'g' 3; the dlpolg S free ENergy appro- yasional part. The latter contribution can only be accessed
priately retains a finite entropy contribution giving rise to theWith E

. ) gs.(7) and(18).
difference between total internal energy and free energy
functions shown in Fig. 4. This is in contrast to the previous
example of the dipole-charge interaction wher&nr1 as
r—0 (perfect alignmentand the total energy equals the free  This work originated as results derived in preparation for
energy. a graduate course in Intermolecular and Surface Forces at
There are two further features associated with the abovkinkoping University. | am grateful to Professor Lars
results. The first concerns the large distance approximatiorkedahl and Professor Ingemar Lundsirfor suggesting |
for the free energy and internal energy. For both, the avergive this course. | am indebted to Professor Roger Horn for
aging contributes d@repulsivg term that has the &7 form,  his enthusiasm for this work and for suggesting the problem
but with a prefactor of 1/3this comes from the angle aver- of a dipole interacting with dipolar medium. Finally, | am
age of co§#)]. Thereafter, the next contribution is the more grateful to the Australian Research Council for financial sup-
familiar (attractive 1/r® form for freely rotating dipoles as port through the Queen Elizabeth Il Research Fellowship
found by Keesom, with the recognizable factor of 2 differ- Foundation.
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